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GLOSSARY OF NOTATION

8 CIR 3  reference configuration

T X5 vectors in IR3 based at X E B

O -R, x = cD(X) deformation

u: S - R 5 infinitesimal deformation

e [7u+(Vu) j/2 strain

C all deformations ¢

F De deformation gradient

FT transpose of F

C = F TF Cauchy Green tensor

W Stored energy function

p = 9; first Piola-Kirchhoff stress3F

S = 2 second Piola-Kirchhoff stress

A = elasticity tensor

C = S (second) elasticity tensor3C

c = 2CI4 classical elasticity tensor

I or I6 identity map on IR3 or B

z = (B,-[) a (dead) load

L all loads with total force zero

L(TX B R3) all linear maps of TX3 to 1W3

svm(T 8, T ) sYmmetric linear maps of TxS to TxX X
SO(3) {Q E L(IR F,3) QTQ = 1, det Q = 1)

sym symmetric elements of M,

skew so(3) skew symmetric elements of M

v infinitesimal rotation about the axis v

L equilibrated loads
e



iii

k: L M. astatic load map

A = k(Z) astatic load for a load Z

j = (ki(ker k) I  non singular part of k

Skew = j(skew) skew viewed in load space

Sym j (sym) sym viewed in load space

D: C L (D) = (-DIV P, P-N)

C {u: S -R 3 ju(O) = 0, Tu(0) E svym
sym

image of Csy m near IB  under D

F: L - Skew N is the graph of Fe

P: I x L Skew F(X,) = F(XZ)/-e

SA  Q's in SO(3) that equilibrate A,

Editorial Note: To avoid confusion of notation, vectors and tensors

are boldface; vectors and 2-tensors are boldface italic and 4-tensors

are in boldface block letters. All other mathematical symbols will

be light-face italic.
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i1. \Introduction

The purpose of this paper is to study the traction problem in

three dimensional nonlinear elasticity using geometric techniques and

singularity theory. The first two napers in the series deal with dead

loads and configurations that are nearly stress free. As was shown by

Signorini '1930] and Stoppelli .19581, this problem has nontrivial

solutions. However, their analysis is incomplete for three reasons.

First, their load was varied only by a scalar factor; in a full

neighborhood in load space of a load which has an axis of equilibrium

there are additional solutions missed by their analysis. Second,

their analysis is only local in the rotation group, so additional

nearly stress free solutions are missed by restricting to rotations

near the identity. Third, some classes of loads with a degenerate axis

of equilibrium were not considered. This paper completes their analysis

by treating these questions as well as stability. The complexity of

the answer is indicated by the fact that near certain tNpes of loads,

we find up to 40 distinct solutions that are nearly stress free. Our

constitutive hypotheses on the stress tensor are 'generic'; for a

degenerate stress tensor there can be even more solutions.

The literature on this problem is very extensive, going back

to Signorini in the 1930's. Our primary sources have been Stoppelli

119581, Grioli [19621, Truesdell and Noll [1965], Van Buren '19b8],

Wang and Truesdell [19731, and Capriz and Podio Guidugli 11971.

However, none of the references beyond Stoppelli '19581 proves any

of the theorems dealing with nontrivial cases: i.e. loads with axes

of equilibrium. However, Grioli 19627 is a convenient reference

for the statements.



The outline of this first part of the paper is as follows. Our

notation for nonlinear elasticity and the problem near a natural state

is formulated in Section 2. In Section 3 the basic properties of the

astatic load are reviewed and developed. The problem is reformulated

with special reference to the global aspects of the rotation group in

Section 4 and introduces the bifurcation equation which plays a crucial

role throughout the paper. Section 5 treats loads with no axis of

equilibrium; there are three new features in this section. First the

proof of Stoppelli's results is considerably simplified. Second, the

results are global relative to the rotation group. Finally, the stabi-

lity of the solutions is determined. The number of solutions will be

classified by load types; this classification scheme is explained in

Section 6. (Some work related to the "type classification" was given by

Ogden [1977]). In Section 7 a second order bifurcation equation is shown

to be a gradient. This consequence of Betti reciprocity is basic to our

analysis. Section 8 gives a complete bifurcation analysis of type 1

loads (the case considered by Stoppelli), including a stability analysis.

New local and global solutions are found. The final section makes

explicit the comparison with Stoppelli's theorem.

The second paper of this series will analyze the remaining types

2, 3 and 4, using a reformulation of our gradient results, discuss

linearization stability, narallel loads and will give additional

connections with the literature.
Acknowledgments

The Signorini-Stoppelli problem was first introduced to us by

Robin Knops. Since then a number of people have made useful comments,

including Stuart Antman, John Ball, Roger Brockett. 'lartin ;olnbitsky,

David Schaeffer, Iorton Gurtin, and Clifford Truesdell.



.. Statement of the Problem

Let B C IR be an open bounded set with smooth boundary and

assume for convenience that 0 E . Let I < p < , s > (3 /p) + 1

and let C be the space of maps 8 B - RS that are of class W ' P

(so they are C1 ) such that t(O) = 0, D is a Ws'P-diffeomor " s m

onto its image, and J(, ) > 0, where J(,) is the Jacobian of

For example, if -: 3 -1W' is Ws'P-close to the identity and

-(0) = 0, then , E C . If Q is a linear isomorphism of IR to

IF with det Q > o, then Qol E C as well.

Let points in 8 be denoted X E 8 and points in IR' be

denoted x. Sometimes we write x = -i(X). Let T be the tangent

3space to B at X, regarded as vectors in IR based at X. We do

not identify T 8 and IR 3 for conceptual clarity. For i I

F(X) E L(TxB, BR3) be the derivative of I at X; by standard abuse

of notation we write F(X) = Dd(X) or Th(XI interchangeably and

L(TXS, 3) denotes the set of all linear maps of T 3 to IR3 .

We let F(X)TG L(IR 3 , TXB) denote the adjoint of F(X) relative to

the Euclidean inner product. Observe that F(X) E L+(TE, X R ), the

linear transformations with positive determinant, since

det F(X) = J( )(X) > 0. We let C = F TF (that is.

CX) = F(X)T F(X) E L(T B , TxB ) ) denote the Cauchv-Green tensor.

We believe that our results also hold when S has piecewise smooth
boundary. This program depends on elliptic regularity for such regions.
Except in special cases, this theory is non-existent and seems to
depend on a modification of the usual Sobolev spaces near corners.
However, for simple shapes like cubes, the necessary regularity can
be checked by hand in situations where the linearized elastostatic
equations can he solved explicitly.



Observe that C(X) E Sym (T B, T B), the positive definite
p05 X X

symmetric linear transformations on T .

Assume we are given a smooth stored energy function IV defined on

pairs (X,C) where C e symp (TB, S ) . For G C . the stored energy
p05 X X

of is /,()dV(~X), where C is the Cauchy-Green tensor of

and dV is the volure element in S . The fact that V. denends on

only through-the noint values of C is usually called material frame

indifference. (See Truesdell and Nol 19651 and Marsden and Hughes

'19781 for discussions.) Since C is a function of F, we shall,

Tby abuse of notation also write W(X,F) for W(X,F F).

The first Piola-Kirchhoff stress tensor P(X,F) is defined

by P(X,F) = D W(X,F), the partial derivative of W with respect
a3*

to F. Thus, P(X,F) E L(TXS )R 3 The second Piola-Kirchhoff stress

tensor S(X,C) is defined by S(X,C) = 2--4%(X, C) , so

S(X,C) E sy1m(TXB, TX B) From the chain rule, one has the relationship

P(X, F). = TS(X,C). FT G + TF

for all G G L(TxSBIX
3).

For finite dimensional vector spaces V,W, the bilinear map

1
L(x,V) x L(V,IW) - IR; (A,B) * -trace(A B) defines an isomorphism

L(V,W) L(W,V). If V = W is an inner product space, this

isomorphism identifies sym(V,V) with s y(V,, Psina this identifi-

cation, we get P(X,F) E L(IR 3 , TXS), S(X,C) E: svm(TXS,rXB and

T T
P(X,F) = S(X,C)OF , or P = SF for short,

-The mass density does not appear in our formulas as we are building
it into the definitions and work, for example? with body force
per unit volume rather than per unit mass.



pJ

Let ALX,F) =-(X,F) denote the elasticity tensor. Identifying

L(L(TxSR3 ), L(T xS, R3)*, in the usual way for second derivatives

with B(L(TxS, S5)), the space of bilinear maps of

L(TxB, IR3) x L(TXS, JR-) to JR , A(X,F) determines a symmetric

bilinear map on L(T B, IR).

The second elasticity tensor C(X,C) is similarly defined to
"S r2W

be 2cc evaluated at (X,C), so may be regarded as a

symmetric bilinear map on sym(T B, T xB). The chain rule gives

T HT FT TGT T2A(x,F).(G,H) = C(X,C-(F H + HTF, FTG + GTF) + S(X,C)'(HTG + G H)

The following two assumptions will be made in the first two

papers of this series.

(HI) The undeformed state is stress free; i.e. P(X,I) = 0,

or equivalently, S(X,I) = 0, where I is the identity.

(H2) Strong ellipticity holds: there is an C > 0 such that

A ( , ) ( v , , v c 1-1) 1i £ i 2 11 v 11 2

* 33
for all E TX B and v ER , where v 0 C E L(TxB, R>) is defined bI'

, (v Eo F,) (V)- . .
The classical elasticity tensor is defined by c(X) = 2C(X,I),

so c(X) is a symmetric bilinear mapping on sym(T B,T 8) to IR; at

= I, we identify TxB and R 3 since x and X coincide. By

(Hl),

I CT TA(X,I1) -(G,H) = -(X-c(G + ,H + H)
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Regarding A(X,I) L(L(T 8,TxB), L(TxB, T B)) and

c(X) E L(svm(Tx B, Tx8), sym(TxB , Tx8) )  this reads

2A(X,I).G = c(X).(G + 6T ,

or, if G is symmetric,

A(X,I).G = c(X)(G)

By (H2), solvability of the linearized equations of elastostatics can

be determined by the Fredholm alternative (see, e.g., Marsden and

Hughes [1978]).

We shall let B: B -R 3 denote a given body force (per unit

volume) and -: 36 - R3 a given surface traction (per unit area).

These are dead loads; in other words, the equilibrium equations

for that we are studying are:

DIV P(X, F(X)) + B(X) = 0 for X e B

(E)

P(X,F(X))-N(X) = T(X) for X G 3B

where N(X) is the outward unit normal to 31 at X E 3 and DIV P

is the divergence* of P(X,F(X)) with respect to X.

Let L denote the space of all pairs (B,T) = Z of loads (of

class Ws -2,p  on B and -l-l/pp on 3) ) such that

T B(X)dV(X) + T(X)dA(X) = 0
• B ?

*Recall from above that P(X,F(X)) 4 LR-3 , T B) . For any v E 3

then P(X,F(X))v defines a vector field on B its diver!ence

defines the vector field DrV P by (DIV P)-v - PI (Pv]



i.e. the total force on 8 vanishes, where dV and dA are the

respective volume and area elements on B and A8. Using the

divergence theorem, observethat if the pair (B,T) is such that (E)

holds for some D E C, then (B,T) E L

Throughout the paper, the group SO(3) = (Q E L(IR R 3)! QTQ =

and det Q = +11 of proper orthogonal transformations will play a

key role.

By (Hi), = B8 (the identity map on 9) solves (E) with

B = T = 0. By material frame indifference, p = QI8 is also a

solution for any Q E SO(3). The map Q + Qf8 embeds SO(3) into

C and we shall identify its image with SO(3). Thus, the "trivial"

solutions of (E) are elements of SO(3).

Our basic problem is as follows:

(PI) Describe the set of all solutions of (E) near the trivial

solutions SO(3) for various loads Z E L near zero.

Here "describe" includes the following objectives:

(a) counting the solutions

(b) determining the stability of the solutions

(c) showing that the results are insensitive to small

perturbations of the stored energy function and the load.
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53. The Astatic Load and Axes of Equilibrium

This section is devoted to the geometry of the load space L.

Many of the results of this section are available in the literature,

but we gather them here for convenience.

Before beginning, we shall recall a few notations and facts

about the rotation group SO(3). Let

3 3 3 3M_ = L( R , IR) = linear transformations of IR to IR

sym = {A E MLAT = A}

T
skew = fA EM31A -A}

We identify skew with so(3), the Lie algebra of SO(3); tkew and

I I
P are isomorphic by the mapping v E IR E skew , where

v(w) = w x v. If v = (p,q,r) relative to the standard basis, then

v = -i i P

q-p 0-

The Lie bracket is ;v,w] = v Z w - w v = -(v x w) where

v . w E M, is given by (v S) w) (u) = v( w,u . The inner product
I

is (v,w) =trace (i w), the Killing form on so(3). Finally,

exp( ') is the rotation about the vector v in the positive sense,

through the angle Iv[.

Now we turn to a study of L . For EC and ZE L , we say

that Z is equilibrated relative to if the total torque in the

configuration , vanishes:
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T9

J,31(X) x B(X)dV(X) + f (X) :(X dA (,) = 0
) B

where Z = (B,:). From symmetry of the stress one sees that if

z= (B,T) E L satisfies (E) for some p E C, then Z is equilibrated

relative to p. (An easy proof uses the Piola transform; cf. Marsden

and Hughes [19781).

Let L denote the loads that are equilibrated relative to thee

identity configuration I8 .

Define the astatic load map k: L x C - M. by

k(Z,) = B(X) 0tp(X)dV(X) + f (X) 5Vt(X)dA(X)
B~

and write k(k) k(Z, I8).

We have actions of S0(3) on L and C given by:

Action of SO(3) on L: QZ(X) = (QB(X), QT(X))

Action of SO(3) on C: Qp = Qop

Note that QZ means "the load arrows are rotated, keeping

the body fixed." We shall write 0 and C0 for the SO(3) orbits

of Z and t. Thus, 0 denotes the trivial solutions corresponding

to Z = o.

The following is a list of basic observations about the astatic

load, each of which is readily verified:
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(Al) Z is equilibrated relative to if and only if

k(Z, ) E sym. In particular, Z E L if and only if
e

k(Z) E sym.

(A2) (equivariance). For Z. E L, C,and Q,Q, E- SO(3)

k(Q Z,Q2 ') = Q-lk(Z,D)Q,

In particular, k(QZ) = Qk(Z)

(A3) (infinitesimal equivariance). For ZE L, 6 C C , and

Wl, W, E skew,

k(W = Wk(Z), k(Z,W, ) = -k(Z, ) W,

In particular, k(WX) = Wk(Z).

Later on, we shall be concerned with how the orbit of E L

meets L e  The most basic result in this direction is the following.

3.1. DaSilva's Theorem. Let 2 G L. Then 0 zq L e  0.

Proof. By the polar decomposition, we can write k(,,) = QTA

for some Q E 50(3) and A E sym. By (A2), k(QZ) = QkW1. = A G ym,

so by (AI), QZ E L e .

Similarly, any load can be equilibrated relative to any chosen

configuration by a suitable rotation.

The concept of an axis of equilibrium deals with the case in

which C meets L. in a degenerate way.

em i ,, 1 1 i i , . . .



11

3.2. Definition. Let Z E Le and v E , lvi = 1. We say that

v is an axis of equilibrium for . when exp(ev)'. e L for alle

real e, i.e. when rotations of Z about the axis v do not

destroy equilibration relative to the identity.

A number of useful ways of reformulating the condition that v

be an axis of equilibrium are as follows.

.3. Proposition. Let 4 G L e and A = k(Z) E sym. The following

conditions are equivalent:

I. Z has an axis of equilibrium v

2. there is a v R, IvII = 1 such that vZ G Le

3. W F AN + WA fails to be an isomorphism of skew to itself

4. trace A is an eigenvalue of A.

Proof. 1 - 2. This follows by differentiating expti-v) in e

at 1 = . 2 1. By (A2),

k(exp(e)Z) ='I + + + ... k(Z,

Since k(,'?) = v'k('2 is symmetric, this is symmetric, term

by term.

2 3. Since k(vZ) = vA is symmetric, vA + \ 0, so

W + AW + WA is not an isomorphism.

3 - 2. There exists a v ,lv1 = 1, such that . \ + = ,

so k(;.) vA is symmetric.

3 -4. Define L h M. by L = (trace \;I - . Then one h:as

the relationship
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(Lv)^  A9 + A

(In fact, if [u,v,w] denotes the triple product, the relationship

[Bu,Bv,BwI = det B[u,v,w] gives [Au,v,w] + [u,Av, w] + [u,v,Aw]

= (trace A) [u,v,w] . This yields (Lv) ^ = ' A + A TZ , which

gives the claimed results for symmetric A). Therefore,

A + 9A = 0 if and only if Lv = 0 , i.e., v is an eigenvector

of A with eigenvalue trace A . 0

3.4. Corollary. Let Z G L and A = k(Z) E sym. Let the eigen-
- e

values of A be denoted a, b, c. Then Z has no axis of equili-

brium if and only if (a + b)(a + c)(b + c) j 0.

Proof. This condition is equivalent to saying that trace A

is not an eigenvalue of A. U

3.5. Definition. We shall say that Z E Le  is a type0 load if Z

has no axis of equilibrium and if the eigenvalues of A = k(Z)

are distinct.

The following shows how the orbits of type 0 loads meet Le '

3.6. Proposition. Let Z E L e be a type 0 load. Then U L e

consists of four type 0 loads.

Proof. We first prove that the S(.3)-orhit of A in M- under

the action Q-QA meets sym in four noints. 'elitive to its hasi;

of eigenvectors, we can write A diag(a,b,c). Then 0.\

contains the four points
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diag(a,b,c) (Q = I)

diag(-a,-b,c) (Q = diag(-l,-l,l))

diag(-a,b,-c) (Q = diag(-l,1-1))

diag(a,-b,-c) (Q = diag(l,-l,-l))

These are distinct points since (a + b)(a + c)(b + c) # 0. Now

suppose a, b and c are distinct. Suppose QA = S G sym. Then

I I'

S= A-. Let ii be an eigenvalue of S with eigenvector u..

21Then S u = u= A u., so w . is an eigenvalue of A. Thus,

as the eigenvectors of A with a given eigenvalue are unique,

u. is an eigenvector of A and -+ . is the corresponding eigenvalue.1 1

Since det Q = +1, det S = det A, so we must have one of the four

cases above.

By equivariance, kWO) (z sym = 0 k(Z) ) sym is a set consisting of

four points. Now 0) z -L k ( T sym), so it suffices to
e. 0k(Z)

show that k is one-to-one on 0 . This is a consequence of the

following and (A2).

3.7. Lemma. Suppose A E sym and dim ker A < 1. Then A has no

isotropv i.e. QA = A implies Q = I.

Proof. Every Q I acts on I) by rotation through an angle

9 about a unique axis, that is, about a line through the

3origin in N 3
. Now QA = A means that Q is the identity on the

range of A. Therefore if Q $ I and QA = A, the range of A

must be 0 or I dimensional, i.e. dim ker A 2. U
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Finally in this section, we study the range and kernel of

k: L - M.

3.8. Proposition. 1. ker k consists of those loads in Le  or

which every axis is an axis of equilibrium.

2. k: L - M. is surjective.

Proof. 1. Let Z E ker k. For W E skew, k(WZO = Wk(Z) = 0

so WZ G L e by 3.3 every axis is an axis of equilibrium. Conversely,

if WZ G Le for all W E skew, then k(WZ) = Wk(Z) is symmetric

for all W; i.e. k(9.)W + Wk(Z) = 0 for all W. From

(Lv)* = Av + vA, where A = k(Z), and L = (trace A)I - A, we

see that L = 0. This implies trace A = 0 and hence A = 0.

To prove 2 introduce the SO(3) invariant inner product on L:

Z,J) = B(X) ,(X) )dV(X) + T(X), (X) )dAiX).

T!

Relative to this and the inner product trace (AT B/2 on M3, the

T
adjoint k : . - L of k is given by

3

k TIA) = (B,T) where B(X) = AX-G, T(X) =X-G,

and

G=IAX dVj% ' fAX dAIX M '1 1

If k T(A) = (0,0) then it is clear that A = I). It follows that

k is suriective. U
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3.9. Corollary. 1. ker k is the largest subspace of L that is

e

SO(3) invariant.

-. kl (ker k) : (ker k) - M. is an isomorphism.

Let j = (ki (ker k) and write

Skew = j (skew) Sym = j (sym)

These are linear subspaces of L of dimension 3 and 6 respectively.

Thus we have the decomposition:

S0(3) invariant pieces

L = Skew q Sym G ker k

L
e

corresponding to the decomposition M- = skew G sym;3

U =( U T) I UT
7(u - U + f2U + U

Note: Skew and L need not be orthogonal.
e



1 t)

j4. Equivalent Reformulations of the Problem

Define ¢: C - L by N',:) = (-DIV P, P.N) i.e.

= (-DIV P(X,F(X)), P(X,F(X)). N(X))

so the equilibrium equations E) become ( ) = Z , From material

frame indifference we have equivariance of 5; i.e. )(Qf) =

Standard Sobolev estimates show that ' is a smooth mapping (see,

for example, Palais '19681). The derivative of is given by

D( ).u = (-DIV(A.Vu),(A.Tu).N

and at = I8  this becomes

W (IB).u = (-DIV(c-e),(ce)-N)

where e = -LVu + (7u)

If D4D(IB): T IC - L were an isomorphism we could solve

( ) = Z uniquely for t near I and Z small. The essence

of our problem is that DM(I) is not an isomorphism; >-Iinnce DSO(3=O,
5 4korel D't(I contain-.

Define C = fu G T C' u(O) = 0 and Vu(O) E svm} . From

(H2) and linear elasticity, we have:

4.1. Lemma. D(I )!Csym: C S Le is an isomorphism.

B x' sm
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The onnection between the astatic load map k: L - 1 anda

is seen from the following computation of .

- 2. Lemma. Let , E C and let P be the first Piola-Kirchhoff

stress tensor of Then

= pdV

This follows by an application of Gauss' theorem to

= (-DIV P) ) X dV(X') + (P N') ) X dA(X'.

This should be compared with the astatic load relative to the

configuration rather than I one gets

k( (, , = S d%

which is symmetric, while k( () -- k( (t ,l& need nt he.

To study solutions of -(0) = Z for 9 near the trivial

solutions and Z near a given load Z, it suffices to take

E Le . This follows from Da Silva's theorem and equivariance of t.

Let C be regarded as an affine subspace of C centered atsvm

I Let be the restriction of 5 to C sym  From the implicit

function theorem we get:



4.3. Lemma. There is a ball centered at I in C whose imae

N under is a smooth submanifold of L tangent to L at 0

(see Ficure 1l. The manifold N is the graph of a unique smooth

mapping

F: L - Skew
e

such that F(O) 0 and DF(O) = 0.

Svm

csymN

Le

I- Skew

ker k/

Figure 1
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Later we shall show how to compute D2F(0) in terms of D(18)-

and C.

Now we are ready to reformulate problem (Pl).

(P2) For a given 2,0 E L near zero, study how 0 meets the graph0 e 2,7

of F for various 2, near z 0*

Problems (P1) and (P2) are related as follows. Let : solve (E)

with Z E L and Q be such that . = QO E C sy. Then (5) = QZ ,

so the orbit of Z meets the graph of F at . Conversely, if

-r
the orbit of Z meets N at t( ) = QZ , then D = Q solves (E).

We claim that near the trivial solutions, the numbers of solutions

to each problem also correspond. This follows from the next lemma.

4.4. Lemma. There is a neighborhood U of Is in Csym such that

E U and Q E U implies Q = IB.

Proof. Note that Csy m  is transverse to CIs at Is and Is

has trivial isotropy. Thus, as SO(3) is compact, 01 is closed, so

there is a neighborhood of U0  of IB in Csy m  such that

Q! B U0 implies Q = I. The same thing is true of orbits passing

through a small neighborhood of I by openness of transversality andZ B.

compactness of SO(3). U

if 0 meets N in k points Q = i = 1.k then

n. are distinct as D is 1-1 on a neighborhood of I in Csym

If this neighborhood is also contained in U of 4.4, then the point.;
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Q- .P . are also distinct iv 4.j. Hence the problems Pl) and ;P_')

are equivalent.

In connection with the action (Q,A) ' QA of 30(3) on M. we

shall require some more notation. Let

Skew(A) = - A - A T ) Eskew C3.2a)

and

Sym(A) = 7(A A ) s ym (3.2b)

be the skew symmetric and symmetric parts of A, respectively.

We shall, by abuse of notation, suppress j and identify Sym

with sym and Skew with skew. Thus we will write a load Z E L as

= (A,n) where A = k(Z) E N1 and n E ker k; hence Z E L precisely3e

when A E sym. The action of SO (3) on L is given by

QZ = (QA,Qn).

Using this notation we can reformulate problem (P2) as follows:

(P3) For a given 2., = (A, n 0 ) E Le near zero, and Z = (A,n)

near 10, find Q E 50(3) such that

Skew(QA F(Sym(QA),Qn) = 0.

Define the rescaled map F: R L -< Skew bye
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Since F(O) = 0 and DF(0> = 0, F is smooth. Moreover, if

F(Z) = + -6C(Z) + ... is the Taylor expansion of F about

zero, then P(k, Z) = Z) + - c z .

In problem (E) let us measure the size of . by the parameter

* Thus, replace (Gb) = Z for Z near zero by (') =

for X near zero. This scaling enables us to conveniently distinguish

the size of Z from its torientation'. In the literature 4 has

always been fixed and taken small. Here we allow 2 to vary as

well. Thus we arrive at the final formulation of the problem.

(P4) For a given Z. = (A0 'n) E Le, for Z near Z 0 and \ small,

find Q E SO(3) such that

Skew(QA) - >F(x, SymQA),Qn) = 0.

The left hand side of this equation will be denoted H( ,A,n.Q)

or H(A,Q) if A, n are fixed.



i5. TYpe 0: No axis of equilibrium

We shall begin the analysis by giving an (almost trivial) proof

of one of the basic theorems of Stoppelli ' 19581

5.1. Theorem. Suppose Z E L has no axis of equilibrium. Then fore

A sufficiently small, there is a unique ' E C and a unique Qs yn

in a neighborhood of the identity in S0(3) such that p = Q-D solves

the traction problem

Proof. Define H:IR x SO(3) -* Skew by

H(X,Q) = Skew(QA) - AF(X,Sym(QA),Qn))

where Z = (A,n) E L = Sym P ker k is fixed. Note thate

D,H(0,I).W = Skew (NA) = A + AW). By Proposition 3.3, this is

an isomorphism. Hence, by the implicit function theorem, H(.',Q) = 0

can be uniquely solved for Q near I E SO(3) as a funcLLion of N

near 0 EIR. U

The geometric reason "why" this proof works and the clue to

treating other cases is the following.

The only other complete proof in English we know of is given in
Van Buren i1968_, although sketches are available in (irioli 19o3_
Tresdell and Noll I 19b5and Wang and Trt:esdell 193 Our proof
is rather different; the use of the map F avoids a series of
complicated estimates used by Stoppelli and Van Buren.



5.2 Lemma. A load Z E L has no axis of equilibrium preciselye

when L =L T 0 In particular, if Z has no axis of equili-
e Z = 2

brium, then C intersects L transversely at 2
Z. e

Prof.Th is ThU. = ":w ;w skew:

Proof. The tangent space to at E E Le ,. 0k

and the projection of this into the comnlement Skew to L is
e

WZ -'AWA - AW) where A = k(W) The result then follows from

part 3 of 3.3. a

We have shown that there is only one solution to , (q) = \Z near

the identity if \ is small and ,. has no axis of equilibrium. How

many solutions are there near the trivial solutions SO(3)? As we

shall see, this problem has a non-trivial answer which depends on the

type of 2. We analyze the simplest case here. Recall from

definition 3.; that a load 2. E Le  is said to be of type 0 if Z has

no axis of equilibrium and if A = k(Q) has distinct eigenvalues.

Loads witn no axis of equilibrium occur amongst other types of

loads classified in the next section, and Stoppelli's theorem 5.1

applies to them. However, the global structure of the solutions

("global" being relative to SO(3)) is different for the different types.

Fr type 0 the situation is as follows.

5.3. Theorem. Let 20 E Le be of tyTe 0. Then for ", sufficiently

small, ) = 0 has exactly four solutions 1n _ ". -d 1 ;

neighborhood of the trivial solutions 50(3) ( C (see Fi ure

il &, . . II . . .
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Proof. By 3.6, 0,10 meets L in four Points. By 5.1, in
0e

a neighborhood of 0 in L, O~. meets N in exactly four points,

the images of I1 1, b, and " 4 say. Thus problem (P2) has four

solutions. By the equivalenceof (P1) and (P2), so does (Pl). U

SO(3) ; the

trivial solutions

i L" e

1Y

3 -- /

Fiure 2



Let A = k(Z0) and S., = IQ!QA G sym}. From the proof of 3.b

we see that SA  is a four element subgroup of SO(3) isomorphic to

Z, e Z,. By our earlier discussions, the elements ). are obtained

from Di by applying rotations close to elements of SA. In

particular, as N 0, the solutions f!i converge to the four

element set SA (regarded as a subset of C).

For 4 sufficiently close to 401 the problem >I:) = X will

also have four solutions. Indeed by the openness of transversality,

0 will also meet N in four points. In other words, the picture

for type 1 in Figure 2 is stable under small perturbations of

Next we study the stability of the four solutions found in

Theorem 5.3. This will be done under the hypothesis that the classical

elasticity tensor in stable. We introduce the following condition:

(H3) Assume there is an 7 > 0 such that for all e E SvmIT S , T B),N' X

c(e) = c(X)(e,e) ) nIel-, = pointwise norm

(E(e) is the stored energy function for linearized elasticity).

Because of difficulties with potential wells and dynamical

stability in elasticity (see Knops and Wilkes 197" and Ball, Knops

and Marsden '1978' ) we shall adopt the following "energy criterion"

definition of stability.

3.4. Definition. A solution of >re) = L will be called stable

if I is a local minimum in C of the potential function
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V. .) = wi.:)dV - K;,

where , )= B(X).DX')dV(X) + :(X) :(X)dA(X) trace k(?.,:
J S J ',B

If .D is not stable, its index is the dimension of the lar;cst

subspace of vectors u tangent to C at D with the property

that - decreases along some curve tangent to j. Thus, index 1)

corresponds to stability.)

5.3. Theorem. Assume tHl)-(tt3) and let 0 e as in 5.3. For

sufficiently small, amongst the four solutions -, *,: I given

by 5.3, exactly one is stable; the others have indices 1, 2, rnd 3.

Suppose is a solution approaching Q E SA  as '% - o. Then *

is stable if and only if QA - trace(OA)I E sym is nositive-definite.

In general, the index of is the number of negative eigenvalues

of QA - trace (QA) I ,

Proof. Let C solve '() = , Then is a criical

point of V. . Consider thc orbit C :Q': 0 Sf o f

Its tangent space decomposes T, C a< follows:
"I)

T C = T. -F (T, .

First consider V, restricted to (T C , t:; ccond C.r v

at in the direct:on of . - 2' .,



0 = QJ8 , this becomes f c(X).(e(X),e(X))dV(X), where

e = I-(7u + ( .7u) T This is larger than a positive constant times the

L norm of e, by (H3). However, since u is in (TC0,

1lleI1 > (constant)!IuIlV I by Korn's inequality (see Fichera '1972).
L- H

By continuity, we have

D-V, ( ) (UMu -> lu il'
0Z 0 H I

if u is orthogonal to 0 at and '\ is small. This implies

that -.0 is a minimum for V in directions transverse to C .

(Actually one can see that 0 is a local minimum in the topologyI0

of C on (T 0 o) by using Tromba's '1976' version of the Morse

lemma. )

Next, consider V. restricted to no By material frame

indifference, W is constant on 0, and so as must be a
+G0

critical point for V- restricted to O, it is also a critical

point for = , restricted to ( where.. ( , It

suffices therefore to determine the index of ,. at T he
"o

result is now a :onsequence of continuity and the limiting case

.+K) given in the following lemma about type ) loads.

S.t. Lemma. Let 2, he type 0 and let A kW. Then S\.

regarded as a subset of C equals the set of critical points or

These I critical points are nondegenerate witn indices

, I, 2 and 3; the index of Q is the number of nv ativc ,igenv.+l~a-

of ).-traceflA I.



_r

2s

Proof. First note that L = (TI SOv3) since D¢(I ras

kernel T ISO(3) = skew, has range Le  and is self-adjoint. Thus

QZ G Le  if and only if 2. - T SO3). It follows that QZ C Le  if

and only if QT is a critical point of Z 01 :Recall that

elements of S = ;Q E S(3):Q E Le  are smmetri
A e

To compute the index of ,. at Q G S\, we compute the

second derivative

d2

- -Z(exp it;IQ) t=O = w-Q)
dt-

Now

(W-Q) = trace k(Z,W-Q) z trace[kf(',fli-]

S -1 ,.2 W ,

trace iAQ I trace [11.]

-1
because Q = Q . Tlhs ouadrati c fory on skew is represented by the

element QA - trace(QA)I o, s -as is seen from. % + .\ = , with

A replaced by QA and trace ' 2vw .;sin, the re-resentations

for rQA. given Proposition 3.,), namely

diag(a,h,c, diagf-a,-b,c,, dia&-a,b,-c) ano diafa,-h,-c:

one checks that all four indices occur. U

Remark. This lemma is a -necial case f t"e :eneral problem

t a rtudy the r:rit c l points n : r IMCn t O n'I :1 ' bit , :7



representation of a Lie group. This situation will arise again in

our analysis of the other load types, . Prankel [19651 aa .

Ramanujam 319691.



e,. Classification of Orbits in ,!..

The purpose of this section is to classify orbits in I. under

the action (Q,A) - QA of S0(3) on M by the way the orbits

meet sym. It is enough to consider orbits 0A  of elements of svrn

by the polar decomposition. We begin by recalling a result already

proved.

b.l. Proposition (Ty-pe 0). Suppose A F s ,-n has no axis of equilibrium

and has distinct eigenvalues. Then 0 - sym consists of four Doint.z
A

at each of which the intersection is transversal.

This was Proposition 3.6. (Another proof of this is given below.

We shall let the eigenvalues of A E sym be denoted a,b,c.

Using the terminology from J3, we say that A has no axis of ecuilibrium

when (a+b)(b+c)(a+c) # 0; i.e. a + b + c a, b or c, and in this

case 0 intersects sym transversely at A.

A

6.2. Definition. We shall say A is of type 1 if A has no axis

of equilibrium and if exactly two of a,b.c are equal ari non-zerl

isay a = b c, a i0

6.3. Proposition. if A is type 1, then C sn consists or

two points (each with no axis of equilibrium) and an E 1 1

point of which has one axis of equilibrium< .

Before proving this, we give a number of lemmas of generai

utility. If , 1RP is a line through the origin in Ml ,  let ,)

be the rotation through angle - about



-1

.. Lemma I a is an emhedding of W onto -, '7

proof. It is clear that Q is a one-to-one map of RP

into SO3). Since Q- = f, Q = = Q, so it maps into

SO(3) -. svm.

Every Q S03\ I is a rotation through some angle -about

some axis If such Q also is symmetric then it has three

independent real ei-envectors. Hence S U

b.5. Corollary. The orbit of the identitY, n,, meets sn in

one moint (I) and T-- (SO(3) 1svm\ I.

6.6, Lemma. Let A E sym with dim ker .A i 1 and suppose that

Q E SO(31 I and QA E svy. Then = 0, mr some line i nvariant

under A and in narticular 0,- sym.

Proof. We can suppose Q 7 I. There is a unique 'up to si n

unit vector x r_ JR3  such that x = x. Since Q. v we hi:ive

\Q so QAQ A. Thus CAx = x s Xx x ,"

const.,nt c. Each of Q and \ leaves V = x- tne rthogonal

conmplement of x. .nvariant, in,' \ is not identi:ally zero -q .

Let S A . sym, so - = Since CXV is 1 rotnt n

this imnlies SV= A V gmvin, C = I or = C. rhere

;.I~x' is the line through x ','hen r) svmm is in emma .I. U



It follows that if dim ker , md

QA sym, then QA AQ, so as i is both orthogonal and symmetric,

A and Q can be simultaneously diagonali:ed.

Proof of o.. if A has dtinc: 2igenvalues, its eigenvectors

are unique, so Q is either -he identity or is a rotation by - about

one of the eigenvectors. M

Preof of.. ;uppose - a lb i c, and let w he an elgenvector

co...s',,:dn z:c t-he eigenvalue c. Let V be the plane orthogonal

tme eigenspace with eigenvalue a. As Q, A can be

.-::aonalized and Q is a rotation by 7 (excluding

r or Q for a line in V.

.rr't: :er-e, Q(wA has eigenvalues (-a,-a,c) so has

e ."Mi'ur.,. in the latter .ase, Q.\ has eigenvalues

i.- i,-c , c C, is an axis of equilibrium, (see 3.3). *

,.7. Corollary. The 1Il1 in Proposition 6.3 is a right coset of

1 1p A1,

the subgroLun S of all rotations about w; in fact MIP

where %0 is any fixed line in V, the niane orthoPonal to w.

Proof. WI Z {Q1eV} and we have the easily verified

identity



: = e xnIAs

5 /2 "0

wvhere r rakes an anle with " in the ;,s2: nse in

These lemmas also enable us to handle the next tvTe.

b.S. Definition. We shall say A is of e if X has no

axis of equilibrium and all three oi a,b,c are e,ual ;and so .

6.9. Proposition. If A is type 2, then s -sym consists of

one point (A) and an IT'

Proof. This is immediate from 6.5.

Notice that each point of the M has a whole circle of axes

of equilibria; namely QzA has as axes of equilibria all vectors

orthogonal to Z. The eigenvalues of QA are a,-a,-a.

II
Tvypes 0,1, and 2 exhaust all syvmmetric matrices with no axis

of equilibrium, and it is easy to check from the above that any

symmetric A with dim ker A I lies on the SO(3)-orbit of a

type 0,1, or 2 matrix. From now on we shall call these orbits, or

any representatives of them, type 0,1, or 2.

Finally we turn to the remaining A's with an axis of eouilibriuim

that is not already on an orbit of type (,I, or I.

6.10. Definition. We say A is type 3 if dim ker A 2 ard

say A is type - if A = 0.

6.11. Proposition. I t A type t t e). 0i 0T 1 St

two points, A and -A.



Proof. S = OA E svm imolies S = - and so again S =

as in o.6 even though possibly A.\ = i) . n this case Q could

be any rotation about ",(x).1

All the foregoing information can be summarized as follows:

6.12. Theorem. The SO(3) orbits in _.. fall into five distinct

types according to the way in which they meet sym (see .'able 1 below).

Furthermore, for A E svM, S= KQQA - svm} consists of I (Q.

for all Z invariant under A tand hence S s\Nn) excent in the

cases (3) dim ker A t.,__n SA also contains the rotations

through any angle about the eigen-axis of A corresnonding to the

non-:ero eigenvalue;

(2) A = 0; then SA = SO(3) . See Table 2 below.

Remarks

1. Table I highlights the fact that having an axis of equilibrium

or not is not an invariant of the SO(3 action on L . This means

there are equilibrated loads having an axis of equilibrium, but

whichwhen rotated globally by a certain amount to another

equilibrated loadno longer have one.

2. Thus, bl Theorem 5.1, we get existence of solutions to the traction

problem for all types of astatic loads except ., .. *

3.. The notion of type can be pulled back From '1_ to L with .i

little care, as we see below.

*In particular the occurrence of n) solutions by Stopel11i in "ne I

is seen to be due to a neglect of" the full rotation fron Iset,
Section S). Our results are also consistent with those olr Rall
[1971].
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6.13. Definition.

By analogy with our definition

S = Q S0(3) QA A sm} ,E I.
A

which we applied when A is of tvye 0 let us now write

S, = Q = SO(3) L L '- 2. E L

From equivariance of k we clearly have:

6.14. Lemma. S = S
z. k(

Note that the map SA - 0t svm: n)-- QA is an embedding for
AA

types 0,1,2 but not all tpces 3,4, because of the isotronv.

Pulling back to L , we see that Q- 0') is an embedding S, Le

if k(,,) is of type 0,1 or 2, so we can refer to ' as being of

type 0,1, or 2 according as k('Z) is. On the other hand, if k( .)

is of type 3 then

either (a) 12 2 L = -

or (b) 0 n Le = two disjoint circles in .,-7 ker k

Finally, if k (,,) is of type 4 then C. i ker k - C and any
p

SO(3) orhit C. is allowable.
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Type of A Description of S\

four points

two points and RP

one point and P-

two disjoint circles

4 SO(3)

TABLE 2

Figure 3 illustrates some simple examples of loads of different

types. These loads are all pure traction, with B = 0.

I I I .. ... ., .... .~ i ... ... .. .. .



axis of equilibrium

Tye1 Rotation by 1800
about one of the horizontal

axc-s produces an equili'-I
rated load with no axis of

equilibrium.

Type 2. Any horizontal axis
is an axis of equilibrium;
vertical axis is not an axis

of equilibrium. Rotation by
1800 about the vertical axis
gives an equilibrated load
with no axis of equilibrum.

____________ ype 3 (a) .The lou
itself admits a circe
group of sunmetrios
about the axis t--
which is thus ain axis

ot equilihrium.
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Trnpe 3 o)* The load is
riot smetric, but the
astatic load remains
constant under rotation
about the axis £--whicn

is thus an axis or
equilibrium.

-,7pe The astatic

load is zero: all axes
are axes of equilibrium.

Figure .,oad t-ypes
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j. The Bifurcation Ecluation and its .radient Lharascor

According to the formulation fPEV of our problem, 'e .,isn to

solve the equation [i(,..\,n;Q) = 0 for Q, where

Hf',,A,n;Q) Skewi A) - "F(,,Sym(QA: ,Q'n),

(A,n) is near (.,,n L e  and , is small. Define the right-nxvariant

vector field X on SO(3) by

xI
.'.., (Q 1 = S kewv(QAo)QQ;
A,

i.e. right translation of Skew(QAo) E so(3) = TISO(3) to T QSO(3).

Likewise, we shall regard H as a right-invariant vector field ci

SO(3) depending on the parameters ,,A,n by setting

X( ,A,n;o) = ;,-, : ) ,

Thus,

X (0,A ,n ;) = X .

Finally, note that q is tIe zero 4et ,"\0

S ( S 5((3 5 ke'

Wha t r i or \':I i ' tvpe < . :i-: 'i . '; .,,' ; ,



1. Lemma. Supose A- svmn is of any tve. Then 'or 0

T S : = IVQIW E skew and 1,QA 0  + QAOW = )]= ker DX\ (Q).

Proof. The second equality is clear for any -\' because DX..\ (Q):
',1 - skew O -QA . For the first one, the inclusion C irjnediitely

01

follows by differentiation of X. (Q) = 0 in 0. Equality then
A0

follows by a dimension count; recall from 3.3 that v 0- v gives

an isomorphism from the space of axes of equilibrium for A (not

necessarily of unit length) to the e skew such that WA + Alb = ). U

Recall that W - WQA 0 + (r L))TW correspnndS to the linear trans-

formation trace(,\0)I-0A. unde-r tho izomolhi- of k.. =

with R 3 . When Q -S., QA, is svmmetric, so this transformation

is sYv netric relative to the Killing :rm on S ,I(3). This; remark

ind -. 1 proves the next lemma.



.euma. 5urnose \ Insvr m" y:re. Then at each point 2

of S , the range of D X\ : T SOt31 T hSOf3) is the orthogonal

complement of T)S

Next we recall a general context for the bifurcation of vector

fields that will be applied to our situation c:. Reeken 193". Let

MI and A. be manifolds and X: I < T M a smooth vector field on

M depending on the parameters A.. E We seek the zeros of X. For

= "0 suppose the zero set S of X is a known smooth compact

submanifold of MI. Assume that MI carries a Riemannian metric and

that for x E S, the range of DX(X, 0) is the orthogonal complement

of T x S. The normal bundle E of S triviali:es a neighborhood U

of S. For each x G U, let Px: T xM - TXS7(X) be the orthogonal

projection to the fiber S (x) over 7(x), where 7: E - S is the

projection. By the inverse function theorem, there is a unique

section .,,: S - E such that PxX(. .(x), ) = (1 for x E S and

in a neighborhood of *0 (assume, for example, .hat is compact).

Let X(x,X) he the orthogonal projection of X x.9 onto the tangent

space to the graph of : at a point x on the graph. Thus, N~x,

is a vector field on the graph of .. and finding its zeros is clearlY

equivalent !for small " to finding zeros of X. he call the -;uatior

, on the graph of ', the hifurcat~on equation. Sinc'



and the graph of :. are diffeomorphic under .,we can equallv

,vell regard X as a vector field 3n . This reduction of the nrohlem

is often known as the Liapunov-Schmidt method.

The above procedure may be applied to our vector field

XI ,A,n;Q) with parameters rX,A,n) and variable x E S0(3] .M.

Assume ',, is near zero and (A,n) is near a load \,n '.,here V

is of arbitrary type. Thus, there is a inique section f h e

normal bundle to So determined by the Liapunov-Schmidt procedure

as described above. Let 7-(.,A,n) denote the graph of

and let X(,\,A,n;Q) be the orthogonal projection of X to the

tangent space of - at Q. Thus, X is a vector field on 7.

As above, we may also regard R as a vector field on S
"A

The rest of this section is devoted to proving that the essential

part of X is a gradient. In the general context ahove, if N is

a gradient, then so is R since the orthogonal projection of a eradient

vector field to a submanifold is the gradient of the restriction. This

simple version does not directly apply to our situation as X need

not be a gradient vector field on S0(3). However, the "second order"

Taylor approximation X, of X will be.

To state our gradient results, recall that in >1 we defined the

quadratic function G: L - skew to be the second order term in the
e

Taylor expansion of F about ). Thus , -

where G is a quadratic function of . The appropriate second order

approximation to the vector field X will thus he defined ev

N ,,\ n:')] ) kowOA - -skew (10; .

P-I



Let , be the second order approximation of the vector field X on

S A obtained by the Liapunov-Schmidt procedure. Thus, X,(Q) is the

orthogonal projection of X., onto the tangent space T S for Q - S
0 AA

0

-.3. Theorem. Sunose A is of arbitrary tZrpe. Then X is a

gradient vector field on S In fact, X, = -grad f, where
A0

f(Q) - ( OQQ f T "JUO < Cu(uQ "

and UQ =Dt(T> i UQ is the unioue solution in S"n

of the linearized equations with load L,, - L

Recall that the pairing between loads : ,B,-) and configurations

(or displacements) is given by

= B(X)-:(X)dV X N . dV = trace k(,:
)B ;

and physically represents a potenti. ',r t'e :,ork. of the loads.

Observe that if <, L , then K l.v = trace \ trac (AO =
e I

for all Q E S0(3).

Remark. In the second term of X, and f w.,e can replace a

by , However, the difference is hiher order, so " is suff:cie:nt

for subsequent applications.

Proof of -. . We shall show that X, is a giradient field on

S0(31 which, by the remarks follwoinz - "., is sufficient.

We nroceed in two parts. Let us first show that X 'M) the

gradient of ( ',QO ' on all of SO(3;



7.4. Lemma. Let L and A= : .[). Deifine - vector field

on SO(3) by X Q, = SkewWA).Q as above and the ma
AT

of SO(3) to IR ,v =,,Q I), Then X\ = -4ad.

Proof. Two simple, but useful observations are:

if B, "V E N1 , with W E skew, thena

B,W) = (skew Bj )

and

If B Ei. , L and E C , thena

( Z,Bt) = ( B,k(Z,q) )

To prove 7.4, we compute as follows:

T

d! (Q). (wQJ = - . l')I

=- (, T  k(:,I )) by (21

= ({i(,0 T , .\

= ( , .

= -( ', ' skew . 2) by !

OA



This deals with the first term of X,. To deal with the second

term, we need a special case of Betti's recinrocity theorem:

7.5. Lemma. oz0.u,.VQ = < IU for Q§Z0  and (Wq 0 e EE

This is a trivial consequence of symmetry of D!('I) i.e. of the

elasticity tensor. It is also proved in standard references; for

example, see Truesdell and Noll 1965; p. 325.

To nrove 7 3., we shall also need to calculato the second derivative of the

skew component of .; i.e. of F(,t) = SkewNk( ( C))] . Surprisingly,

this second derivative depends only on the classical elasticity

tensor C . Recall from 52 that we regard c as a linear map of

1 T
svm to itself and that we write e = 77(Tu+(u) .

7.6. Lemma. Let F: - skew be defined by F(K) Skew 7kt (A'.

Then F(I,) = 0, DF(IB) = 0 and

D2F(IB)(U,u) = 2 Skew ( 7u-Cje~dV -2 Skew k(,u.U)
JB

where = (h '7 ), b = -DIV(c(e)) and = c(e)'N , Identify'ing
u It U U

skew with P, this becomes

-DF(i ) (u,u) = b a dV + u dA
B SB

il~~~~~~~3 IB I I [III IIIII li



Proof. By Lemma .1.2, F() = Skew, , PdV where P I the

first Piola-Kirchhoff stress tensor. We have P(I ) - , so

F(I = 0. Also, DF(I ).u = skew -. u dV = skew c-e

as ce is symmetric an" since I ) = c. To compute L-,

shall need to use the fact that S is symmetric. Wrrite t e'

use the product rule to obtain D P(F)-T-u = 7u.'-f FD-S( F" .u.

Thus, as S(TS) = o,

D-P T )I(Tu,-%) = :u-DFS" -:v - 7v.D S(F)-7u DFS(I -u,T
, .

B.F F5F

T
Now D S(I)--.u = D S(I )-(7u + 7uT ) - ce and DFS{I S I is symmetric,

so

SOS
D2F(I,)-(u,ul) = skew DFT (I L)(TU) dV

uskew C uc(e) dV

Finally, this equals

-2 skew b,A dV + 7, u d.,\

B

by the divergence theorem, so the last statement follows. V



-19

ExampIe. :or homoeneous Isotronic material,

cie =,race e)f - 2"-e

where e = u (7u) and \, >i are the Lame moduli.

Thus,

D-F(IB) u,u = 2 Skew u- [trace (U)]T u - edV
S

2 Skew ',trace(7u)]Tu + i7u.Tu'dV 7

Let us next see what 7.o says about the quadratic term G in

the Taylor expansion of F. For E E C we have the identity

F (,0 = FP M (,))e

where Pe: L - Le  is the orthogonal projection. Thus, as DF and

DF are :ero at I and 0 resnectivel,', and PeD' ( IB DD(IIQ

,e 7et

D2F(lI )(u,v) = D2F(O)(D((I B) u,D¢MI )*v)

-1 ehaeheiety
Hence for C Le and writing u, = D¢(I , we have the identit

D- F (I



i.e.

G 2 k rb D u dV + u

S 3

= 2 Skew k((b,L),u

where b : -DIV(c.(e),), and T = c(e,)-N and eZ = [7u, T (u,.T'2

However, these last equations say exactly that (b.) = Z, and so we get

-IG(Z) = Skew k(Z,u !

Completion of the proof of 7.3. The derivative of

STT

+( 0, t-IQ TU Q in the direction WQ is given by

=. O(;w T u (by Betti reciprocity, 7.5)

= - ( 'Wu

=-( W ,k(Q2 O ,u) by (2)

- P. , Skew k(Q2 'O1U by 1)

= -( WO , Skew k(Q, () )Q

/ 1 04n y )
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51

'S. Bifurcation Analysis for Type I

Ile now discuss the solutions of the basic eauation

H( ,A,N;Q) = Skew(OA) - (FC(A ,Sy n QA),Qn) 0 ,

for the load 2 = (A,n) near a load Z0 = (A0 ,n 0) having an axis of

equilibrium and of type 1, and for t near fl We shall also obtain

the stability of the solutions and finally we shall comnare our results

with those of Stonpelli [1958]. For type I we need to do a bifurcation

analysis on the circle S corresponding to the degenerate zero set
A 0

of H when > = 0 and Z = Z 0 . The analysis has some features in

common with the papers of Hale [1977] and Hale and Taboas [.91].

Without loss of generality we can assume that A0 = dia04i,-a,-c)

where 0 a c. Thus, from 56 the set S of zeros of Skew (OA) for

E SO(3) is given explicitly by the following two points and circle:

S . d i a g (l , , ) d i a g ( -1 , ,- ) 'l U C A2)

",her-

:% = = x - Ix = cos -, V siin
0 () !

The loads corresponding to the two points ar. An = diag a,ac' and

\ = diagi-,-a,cl .

From -.3, te are led to study the cri tical point-; )f

Q ( 1 1 oI C Note trom the i, Iv'erpen'C e

thenren that



, tuo = '7u O, c~e ) dV

0 03)

where u D (I) (09. ) and eQ U (7u) ]2. Thus :he

function f is computable from linearized elasticity alone, Thich

leads to the curious observation that our "second order" nonlinear

elasticity here involves no more data than linear elasticity, but

merely processes the information in a different way. Writing Qz
x -y )

y x 0 as in (2), f becomes a nolynomial of degree 2 in

(x,v). Write the two terms of f as

fhQ) = fox,, = b + b + by) + (ax a.,xy + a - aIx 4 a37 + a %)

14)

which defines the numerical constants bo,bl,b . and a1  a . .. ext

define new parameters al. a6  by writing

f (x,y) = f(x,y)

and letting

fx,y) = I X"2+ ajXy - y2 + - 4j X --k

Note that l .. ' depend on our parameters , as elI :is n

the elastic moduli of the material. Thus,

1 ' 2 , .1

a , , t - II I - -I I I I. . ..



7I

Replacing ), Q where ) is as :n , effects i

rotation of the x-y plane. Thus, by rotation of , f necessary,

we can assume -t, =

Let us fix '1 x- and consider the bifurcations of zeros of

df [a -_ I c XV Y x - -4 y on S i.e., critical noints of f"
je 3l 1 5

on S>4 with a. and a_ as narameters.

Set El= .,  R-,S 1  dr*Set M d 4'1 d 4 the manifold

of critical points of f*. Indeed, M is a manifoll ind can be

parametri:ed by S1  , = -cos 3 S

2  1 I 2

Denote by r: R - R the projection onto the first factor.

3.1. Lemma. Set [ E2(Cal-,a ) a 3 7C 10 8a _ -, (a I• _ _ 1 a- 3 1 3 :

If :t -"_ # 0 , then 7 I - R2 is a proner stable mar in t aA-snace,
1- 33

and its set of critical values is the astroid defined by 0

(see Figure -'. below).

Since the number of point> in (K i.e., the :eros of

dr* a t -t (t .1) is a constant over . or 0 ,wed4'

obtain

df*',.2. C'orollary.v, -- has 4 :eros if 0 in,! hA. " r -

0 "
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Proof of Lemma 3.1.

The critical set Z of 7-o: R S1  R i
1 S1  7

e R x S ; sin-e + a, cos + = O} Thus, the set of

critical values of - can be parametrized by

= -2( aijco
4 (L a rs

-(= 2(ca- 3 ) sin0
1- 3

Since E consists of 4 cusp points, 4 fold lines and

'Too 7 is 1-1 , by a result of Whitney (see Mather [19691 or

';olubitsky and -uillemin [1973)), one knows that 7ro is a stable map,

Eliminating e produces the bifurcation set

2/3 2/3 2/3 (9)
For 23 (l-des3ri= 4 " show i gu

For : - aS # 0 , (8) describes the astroid shown in Figure a



'a',
od.5

Figure 4-

Next, observe that for real numbers A, R nd C,

3 - 3

A + B + C = !) if and only if A. + C K 3ABC io)

by virtue of the identity A , B - 3ABC \ " *

AB - BC - CA \pplying (10) to O1 hows thot ' 1 I uivaInt t

- .iv = -s t e. (d2( t -con utsil onth ".ic'4 ' 1 4 ,) ."

gives the stated conclusion. U



I

The family of functions on a with parameters '

enjoys a universal property. Consider a perturbed family

dr* .m-

de with g(0,0,- = for R . o

each (,c), denote by , = .(a4 , 5  df* 
+  ' ' .

4 ' 3
, 

=

the "manifold" of zeros.

S.3. Lemma. For (\,c) sufficiently small, the sets '.. are

manifolds and there exist two smooth families of diffeomormhisms

R- 1- R- and 'T : - 1i defined for " c sufficiently

small, such that 7o. : ., , and ? = identity, = identity.

Proof: For .,c sufficiently small, the maS ,: \J .

, ( ) 2(1+ ) cos + sin t- , -2(co.+,)

defines a parametrization of '. ,c By Lemma S.1 :,1 ) , - I-

is an unfolding of the proner stable map + . Thus, one can find

diffeomorphisms o. , , , on IR -S and resp ctivelv

.,c.,
such that -, 7c 

I  = (r ; .'* Th ; lemma foI: s , ett iL

'kOw, ',e are reidy tn t tate oir reit1 r'<-l on the nimber "

;oI1t :on. , near typ e I loaJds. let -= , eut'nd mrothl V,"ii

par;aIreter. i P , I it , I-

lefined hv -", a ,, a :nd a_ ',v i.



3.4. Theorem. Let ne a tvoe I load with k , =a

0 i a c- , a, = 0 , and a i a Then, there exists a

(=smooth)a function c),, () (a4,a5  (, defined for

k;,c sufficiently small and 'k - 0 such that, the traction

problem has:

(i) four solutions for the load Z,(c) if 1K,.) 0

(two of them near C
:0

(ii) six solutions for the load "(c) it -,c) > 0

(two of them near C
A1

Proof: The bifurcation of zeros of c (f. f-) on (=S

is the same as finding zeros of _ = -. 4 )+ C

df , df*+d or + g , where g(0,0,-_) = C) Let -'

be the family of diffeomorphisms found in Lemma 3.3. Take

= + a _ a-) which

has the desired property. U

Next, we want to determine the "generic" structure of the hifurcation

set K = = 0) in (,c) space, " 0

For m 0 ,)= (a,a) 0 it is clear that K .

Indeed, our traction problem has two .itions:ilear C if
A

'a a-) , and four solutions near C a,,a

h \ ( ,

rfr m = 1 , consider k. 2 1, .

where \(c s the I incar rart t . 'hi, r,.,resent : i l t r i ht

SIn c ;I ch!I we : s;Iime t o it r',cct tv t rI QI t.srir';i'r'l' f r rcy
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Meet. \otice that = , < is the inverse image o3

the astroid (defined by equation (9)), under the man

h, : c a, K, as in the

proof of Theorem 8.4). Write ,c = Recall that X,(c) = A(cJ + 0( c 7,

and consider the map

b -\(c) bA_ (c)
c t,: h, ,, c) = a... ( * a4  ' 0(+, a. 0 .)

Since the astroid is bounded and . is close to the identity,

there exists an interval (-1,51) such that K, = c E K, C. , m')

for \ > 0 , c sufficiently small. Applying the isotopy theoren

for transversal maps (see e.g., Hirsch [19761) to the family .

through h0 = k , we conclude that the bifurcation set .' consists

of 0, 2, or 4 curves with slopes k (astroid) (see Figures 5,G).

Thus, for example, by choosing c # 0 sufficiently small, and

letting ? 0 (i.e., consider the load ,k.Z(c)), one can pass :rom

a parameter region where there are two solutions near the circle

(four in all) to one where there are four near the circle (six in

all) and back again to the two-solution region (see Figure .

Such a situation is not dealt with in the analysis of Stoppelli [1953.



C C9

4

Figurp 7 Fiure

For m > 2 , let us suppose that the affine map:

b1A~c) _____

2 a , a_) is onto, where again AKc)

is linear part of Z(c) Without loss of generality, we may also

assume that b.\(c) = c1  and b.A(c) c, , where c :(C1 ,c , /

Notice that K, = (c1 ,c,) (\,c 1 ,c, , is the inverse image

of the astroid under the map h (c+, .- ;I

-- +___ 4 * a ) S
+ a : , + a4  + a

2c , c, and consider the mao



h.-a. C- 1 -

As before, K, cI ,c c 1' ,.c is hounded uniformly

for N > 0 , c sufficiently small. \pplving the isotopy theorem

for transversal mans to the family h. through the affine

isomorphism h we conclude that the bifurcation set is a

cylinder-like set along the :-axis with hase a cone over the

astroid in c1 ,c, space. The first order approximation of this

cone is given by the cone over the astroid in the plane , = ,

centered at (-2a -2a1 with "size" 4 a -a (see Figure 7 .

F 1 3 9

i cure 7
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Next we discuss the stability" of the solutions :orresponding to

loads near load of tvne 1. This can he determined by combining

our stability results for t7)me Theorem 5.5; together ;ith

w4ell-known stalbility results for the cusp. We make the same

assumntions as those in Theorem .4.

3. Theorem. Let A diag(a,-a,-c) A diag(aa,c.) and

A = diag(-a,-a,c) as above. The indices of the bifurcating

solutions are boxed in Table 3. (Recall that stable solutions have

index = 0.) In each case the circle renresents CA defined by

equation (2).

Note that two stable solutions bifurcate off the circle when

c > 'a . In all other cases the solutions near the circle are

unstable.



FABLE 3

:alues of
c, a, Values of -.ee ;heorem '

0

< < a ,a .- ) '

A A i

c< a 
--- "

' a A** A "-
0> 00 'E

c <-a A*

c < a A0  0 :21a o 2 + t] I

ITh

A > I " ) 1

0  I ,- 1 \

0 __

L ,J ' *"
K "t- :-. . T .



S.4. Example. Let B CDj3  be a region with unit volume and let

the load be given by 0 = (0'>) where

a 0 0 a, p -

a 0 -

where N is the unit outward normal on Th. Consider a homogeneous

isotropic h perelastic material whose linearized elasticity tensor

c has Lame moduli (, , see the remarks Following . inG :s

.stable and strongly elliptic: i.e., 0 , 2 3 ).

0 o 4h.
Thus, k(,) = -a by divergence theorem, and so

(a - - ) ' :

is a tvpe I load. It is easy to check that

r(a - Ii av IV
=c

- ~i~ -a =c a -ax ) X. for' = " x )
x -v=I wee c H= --- traco l),lece

I where

0 -- A -c /

' " - -- "
____ _ento_,

whe e ) = - ra e 7+ 2.( ..+ .



I:I

which is a constant (independent of x, v). In this situation,

3.5. Example. Consider the same traction nroblem as above, but

with a homogeneous nonisotropic hy-nerelastic material w'hose

linearized elasticity tensor is given by c = - * .iau, 2

IF 0 0l x -V C)

In this case, u (X) = 0- 0 X Q x
L- 0 0 -c o 0 ) 1'

where c (F) = F + diag F . Then

< Zo' QT > = c(Tu )> dV

a ay 0 7ax 'v 0 )
ay -2ax 0 ay -ax A) /

0 0 ) -c /

S 4ax- + 2avy + 2c

Hence, = 3a 0 , and our traction problem fn has

six solutions (four near C) , with stability determinej by

table 3.



\XexI .vs I iI 'Aa'5,s' mw to obtain the results oz StIf oe 1

1958 as a special case of our analysis. We refer the reader to

the statements of Stoppelli's results in rioli '1962, p. 5

this aunrOach one 7ocuses attention on bifurcations that occur on the

circle by examinintz what happens at a particular location on the

circle and .'We can assume this oint is l.9) i.i. I

' rh no loss of g eneralitv.

First of all, if sc, + it j 0 then (1,0) is not a critical
- D

point of f* so there are no solutions near f1,0)). We may a.sume

then that :t + a4 = 0 and then the Taylor expansion of f* about
-a-

0 becomes

f* £9) = (a 1  * -() + (-'. i + :,a - -) - - _--

+ 1a + - . - (hi her order tcris(

For critical points, we are seeking zeros of

df ~ + - .)+ l-

Jf d* 1

Case I. If - - - 0, then - ..

and so there is just one solution. Tb is S'heorem I- on p.

of tdrioli 192



Case 2. If -, + :t -  and , hen

df* 3

- + o(--, ind so there art-, r ,,n

1fold point) This is 11heoro'n ] )n : I r "',i- >92

Case 3. If -', -4.-_ ' = ) but , -

dr* 4 :t4 3

then - U-' , so thcr- ir- , r .

solutions !cusp point This is Theorem II on . f r 1o I i

Furthermore, if we express our constants . ., '" St t04.

elasticitv tensor c and solutions of the :inerized :rjh isa

using (3) above, we find the same conditions for these th '. c

as is given on p. S- of Grioli l'9n2

Thus we recover the results af Stoppelli on type I loads. \.

was explained in the introduction, however, this analysis is on!-.

local on the circle and does not give the full storv of thc

hi furcation picture, even in this case. l'he comp I e 11 far'at "

anal'sis, includinio stabilit':. j summar zel v sir w orur

T;ble 3.
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